How much rain? Linear equations
 from the Esri Geolnquiries ${ }^{\text {TM }}$ collection for Mathematics

Target audience - Algebra 1 learners

Time required - 15 minutes

Activity
Measure the distance between two rain gauges to estimate how much precipitation an intervening town receives by deriving a linear function.

Math Standards
CCSS: Math.Content.8.EE.B.6. Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=$ $m x+b$ for a line intercepting the vertical axis at b.
CCSS: Math.Content.8.EE.C.7. Solve linear equations in one variable.

Learning Outcome

- Students will use a linear model to interpolate an intermediate value in a real-world situation.

Map URL: http://esriurl.com/MathGeolnquiry4

Engage

How much rain has fallen so far in 2017?
\rightarrow Click the URL above to launch the map.
\rightarrow Read aloud: "In early 2017, the amount of rainfall was recorded at different gauges along Sleeping Bear Creek. Notice two rain gauges labeled South and Cimarron River."
\rightarrow Click each marker to find the total rainfall in inches that each gauge received in early 2017. [20.77 and 32.84]

- You will notice a gauge labeled E 210 Rd between the other two rain gauges.
\rightarrow Make a guess as to the amount of rain the E 210 Rd gauge received. [Note the responses on the board or in individual student notes.]
? How might you use the rainfall from the two known gauges to calculate a better estimate of the unknown rainfall at E 210 Rd? [Create a model.]

© Explore

What is the equation of the line?

\rightarrow Read aloud: "We will use a linear relationship as a model for estimating the rainfall at E 210 Rd and then compare that estimate to the actual rainfall."
\rightarrow From the Measure tool, select Measure and choose Kilometers.
\rightarrow Measure the distance between the South gauge and the Cimarron gauge. What is the distance? [$\sim 24.6 \mathrm{~km}$]
\rightarrow Measure the distance from the South gauge to the gauge near E 210 Rd . What is the distance? [$\sim 8.2 \mathrm{~km}$]
\rightarrow Using distance as the independent variable and rainfall as the dependent variable, calculate the slope between South and Cimarron River. $\left[\frac{32.84-20.77}{24.6-0}\right]=.49065$
\rightarrow Use this slope to derive the equation of the line. $\left[\frac{y=.49065 x+20.77}{\text { rainfall }=.49065 \text { distance }+20.77}\right]$
\rightarrow Use the distance from the South gauge to Cimarron River to estimate the rainfall at E 210 Rd, rounding to the nearest tenth. $[y=.49065(8.2)+20.77=24.8$ in. $]$

Explain

How does the model compare with reality?

? How does the estimate using the linear model compare to your original guess at E 210 Rd ; which do you think is more accurate (closest to the actual rainfall) and why? [The model should be more accurate, generally. However, some students may make a more accurate guess.]
\rightarrow Click Details and then the Show Contents of Map button.
\rightarrow Check the Actual Rainfall layer check box to turn on the layer.
? How did the estimate using the linear model compare to the actual rainfall? [It should have been very close.]

: ${ }^{2}$ Elaborate

Can a line be used to estimate rainfall beyond the data?

\rightarrow Using the actual rainfall amounts for both the South and E 210 Rd gauges and using the distance between them, find the equation of the line that models rainfall between the two gauges.
\rightarrow Use that equation to estimate the rainfall at the Cimarron River gauge.
? How well does the linear model predict rainfall, not between, but beyond the gauges? [It becomes less accurate beyond the gauges.]

Evaluate

Does the linear model work for all gauges?

\rightarrow Turn on the Six Gauges layer, and note rainfall amounts at other gauges.
\rightarrow Pick one other gauge and use the model that you previously derived to predict the rainfall at the gauge that you just picked.
? Does your model adequately predict the rainfall at that gauge? [Answers will depend on the chosen gauge and student accuracy.]

TURN A MAP LAYER ON AND OFF

- Make sure that the Details pane is selected, and click Show Map Contents.
- To show individual map layers, select the check boxes next to the layer names.
- Hint: If a map layer name is light gray, zoom in or out on the map until the layer name is black. The layer can now be turned on.

USE THE MEASURE TOOL

- Click Measure, select the Distance button, and from the drop-down list, choose a unit of measurement.
- On the map, click once to start the measurement, click again to change direction, and double-click to stop measuring.
- Hint: Position the area of interest on the map so that it is not obscured by the Measure window.

Next Steps

DID YOU KNOW? ArcGIS Online is a mapping platform freely available to public, private, and home schools. A school subscription provides additional security, privacy, and content features. Learn more about ArcGIS Online and how to get a school subscription at http://www.esri.com/schools.
THEN TRY THIS...

- Load a layer of rain gauges for an area.
- Using an ArcGIS Online organizational account's Analysis tools, select Analyze Patterns and then Interpolate Points.

TEXT

REFERENCES

This GIS map has been cross-referenced to material in sections of chapters from these high school texts.

- Geometry by Holt, Rinehart \& Winston - Chapter 3
- Geometry by Moise \& Downs - Chapter 13

